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Abstract

This paper describes a method of generating gamma variates that
ot~i~ ,.te~~ods. —

appears to be less costly than’~~recently suggested method In [3]. For
- ,c: -‘ 

~ P
large shape parameter ci the cost of computation Is proportional to 

~~~
whereas the , method ~ ~js proportional to c~. ExperimentatI~~ in [2]

J ~ indicates that for small the method suggested here also dominates

methods- recently suggested in [1J~~albe1t those methods dominate for large

~ct. The method suggested here uses the rejection technique._______
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1. Introductlont

This paper describes a new technique (method 1) for sampling from

the gamma distribution on a digital computer and compares It with an

alternative technique (method 2) that Wallace has suggested In [3]. A

H 

gamma variate X has the probability density functiontt (p.d.f.)

~ I
x~~

1 e~~/r(a) 0 < x < a, a > 0

J (1) f~(x) = 
—

0 elsewhere.

Both methods use the rejection method and apply for a ‘ 1.

2. Rejection Method

Let X be a nonnegative valued continuous random variable with

bounded p.d.f. representable in the form

c(a , 8)a(a , 8)g(x , a, 8)h(x, a, ~
) 0 < x

(2) 
~x~’~’ 

a) = 
—

0 elsewhere

0 < h(x, a, 8), f  h(x, a, 8)dx = 1,

0

O < g(x, a, ~
) < a(ct , ~

) > l/g(x, a, 8),

L
l/c(a, 8) = a(ct , ~

) f g(x, a, 8)h(x, a, 8)dx.

Let X’ denote a random variab e with p.d.f. h and let U be a uniform

deviate on (0, 1). If U < a(a , 8)g(X ’ , a, ~
) then X’ has the p.d.f.

I am grateful to Mr. Hunter McDaniel for programing methods 1
and 2 in Pi/l.

Here we assume a unit scale parameter without loss of generality.
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in (2). This result follows from

pr[U < a(a, 8)g(X, a, a)IX’ = x]h(x , a, a)
< a(a, a)g(x, a, a)) =

pr[U a(cz, a)g(x, a, a)]
(3)

= fx(x, ci).

j  Since

4
(4) pr[U < a(a , a)g(x, a, 8)] = l/c(a , a)

c(ci , 8) denotes the mean number of trials to obtain an X from (2). For

• 
a given X from a specified h we want the probability of success to be

as close to unity as possible. This feature requires

I (5) 1/a*(a, a) = max g(x, a, a).
x

For any X ’ we want (4) to be as large as possible, which Implies .

• • c(a, 8*) = mm c(a, a) = min[l/a *(a , ~)Eg(X ’ , a, a)]
-

. 
8 8

= min[max g(x, a, a)/Eg(X’, a, a)]
a x

Eg(X’ , a, a) = .r g(x , a, ~)h(x , a, ~)dx.
0

The distinction between methods 1 and 2 lies In the choice of h.

Table 1 shows relevant quantities for each proposal. To make an appropriate
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comparison between methods we need to consider the mean number of trials

c3
(a, a*) for each and the mean number of required random numbers.

Table 1

Gama Generation* for a > 1

• Method

I h1(x , a, a) g1(x, a, a) a1*(a , a) 8j* Cj (a , 8*)

1 a le~~
’8 x~~

1e~~~~
’
~~ (e/a)Ct~ a aae~~ /r(a)

x’~~e~~[(l-8)y+~x] x’~
’ y (l-a)fa(l-y’)1~

’ 
1-

2 I I y ’ r (y)y 
~
‘ /r(y)

r(y+l) (l—a)y l-ax l_y s

Y
I_a-’v

* <e> denotes the largest integer in 6.

3. Method 1

Conceptually, method 1 implIes 4 steps :

-

~~~~~ 
j 1. Generate an exponential deviatet XI .

2. Generate a uniform deviate U.

3. If U < (Xh/eX~~~)0t~ then X = aX’ has the p.d.f. in (2).

4. Otherwise, return to step 1.

If we use the inverse transform method to generate X’ then each trial requires

• 

- 

2 random numbers. Therefore, the mean number of random numbers needed to

generate X from (2) Is 2cz~
1/r(a)e~~

I . For large ci this quantity is approximately

* e(2a/w)1
~
’2 , an appealing result. Notice that for large integral a, using method 1

An exponential deviate has unit mean.
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requires fewer random numbers than the conventional method which uses

b
(7) X = —l nfl (U1),i l

U1, .. ., U being a sequence of independent uniform deviates. For small Integral

• a one can show that (7) is superior. Our experiments indicate that method one

• prevails for nonintegral a < 7 and all a > 7.
- 4. Method 2

For integral a method 2 uses (7). For nonintegral a the 6 steps are:

1. Generate a uniform deviate U.

2. If U < l—a+<a> generate X’ from (7) using b = <a>.

3. Otherwise , generate X ’ from (7) using b = <a+l>.

4. Generate a uniform deviate U.

1 5. If U < (X1/1)’r’/(l_1 .+Xu/y) then X’ has the p.d.f. (2).

6. Otherwise , go to step 1.

These steps require a+2 random numbers on average per trial. Therefore,

for nonintegral a, method 2 uses (a+2)r(y)y ‘r /r(a) random numbers on average.

This quantity is appr oximately cx+2 for ct>5.

5. Comparison of Methods

PL/l programs were prepared using algorithm Gl for method 1 and

usin g the steps gi ven in [3) for method 2.

- Algorithm Gi

4 Given : a

1. ci’ +a- l.

I 2. Generate a uniform deviate U.

(continued)
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~ 1 3 V ÷ - l n U

4. Generate a uniform deviate U.

5. W -# —ln U.

6. If W > c z ’(V - ln V-l), X ÷ aV and return with X.

7. Otherwise , go to 2.

Table 2 displays the results for generation of 10,000 gamma variates for each

selected value 0ft a.

Table 2

Comparison of Methods

mean CPU time
(In ~isec.)

a Method 1 Method 2 Ratio

1.25 723 1093 .661

2.25 988 1300 .760

3.25 1193 1542 .774

4.25 1352 1787 .757

5.25 1541 2039 .756

Based on these results we computed expressions for 1., the mean

CPU time for method I , as a func tion of ~~~. These expressions are in microseconds.

11 
= 140 +

(8)

.~. 

2 = ~~~~~~~~~~~~~~~~~~~~~~~

t The programs were run on the IBM 360/75 computer at the University of North
Carolina Computer Center at Chapel Hill as single stream inputs. This
procedure minimized the error due to monitoring in a mul tiprogram mode.  

•
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For large a 11/12 ~ 624/254,G = 2.46/pc. For example, a = 30 gives

11/12 0.45 and a = 50, 11/12 0.35.

One modification to method 1 makes it at least as good as method 2 for

all integral a, while preserving its superiority for nonintegral a. Exper-

J 

imentation with method 1 revealed that it is superior to method 2 for all

a > 7. Addition of the statement:

a
0. If a < 7 and <a> = a, return with X = -ln(f1 U.)

1=1 •‘

j prior to statement 1 in algorithm Gi modifies the flow appropriately.

5. New Prospects

Upon conclusion of the work presented here the writer learned of research

by Dieter and Ahrens in [1] on gamma generation 1) using a truncated noncentral

Cauchy distribution for h and 2) exploiting the relationship between

the gamma and normal distributions for large a. The most notable feature

of their work is that computation time goes to a fixed limi t as a increases.

Although this property makes the Dieter and Ahrens procedures more attractive

for lar ge ~~~, Robinson and Lewis [2] have recently prepared a gamma generation

program in which a variant of algorithm Gi dominates all competitors for

1.2 < ~ > 2.9. Since this is a commonly encountered range in practice the

significance of method 1 remains.

Since the work in [2] generates exponential variates by a more efficient

method than inverse transformation does, it is not presently clear to the

writer what the range of superiority would be using algorithm Gl. This issue

is a legitimate concern since simulation languages such as SIMSCRIPT and

SIMPL/1 use the Inverse approach .
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